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Abstract

The concept of the ‘‘Calorie’’ originated in the 1800s in an environment with limited food availability,
primarily as a means to define economic equivalencies in the energy density of food substrates. Soon thereafter,
the energy densities of the major macronutrients—fat, protein, and carbohydrates—were defined. However,
within a few decades of its inception, the ‘‘Calorie’’ became a commercial tool for industries to promote
specific food products, regardless of health benefit. Modern technology has altered our living conditions and has
changed our relationship with food from one of survival to palatability. Advances in agriculture, food
manufacturing, and processing have ensured that calorie scarcity is less prevalent than calorie excess in the
modern world. Yet, many still approach dietary macronutrients in a reductionist manner and assume that
isocalorie foodstuffs are isometabolic. Herein, we discuss a novel way to view the major food macronutrients
and human diet in this era of excessive caloric consumption, along with a novel relationship among calorie
scarcity, mild cold stress, and sleep that may explain the increasing prevalence of nutritionally related diseases.

Introduction

In 400 BC, Hippocrates wrote: ‘‘We must consider
[whether] food is to be given once or twice a day, in

greater or smaller quantities, and at intervals. Something
must be conceded to habit, to season, to country and to
age.’’1 Twenty-three centuries later, Wilbur O. Atwater, a
leading 19th century nutritionist, wrote: ‘‘In our practice of
eating, we are apt to be influenced too much by taste [and]
the dictates of the palate; we are prone to let natural instinct
be overruled by acquired appetite. We need to observe our
diet and regulate appetite by reason. In doing this we may be
greatly aided by the knowledge of what our food contains
and how it serves its purpose in nutrition.’’2

Today, we are faced with an unprecedented obesity
pandemic that is propelling a dramatic rise in chronic age-
related diseases. In fact, individuals who are overweight
worldwide now outnumber those undernourished.3 Further-
more, information regarding nutrition has never been more
voluminous or accessible. Numerous books, blogs, and
guidelines provide not only recommendations for how to
eat, but also discuss the underlying biology supporting their

claims. Traditional scientists and physicians, along with a
cadre of citizen scientists, are also earnestly struggling to
understand the etiology of the obesity epidemic and its at-
tendant consequences, and how the rise in chronic overnu-
trition and nutritionally related diseases might be reversed.

The ‘‘Calorie’’

In the 1800s, a fundamental change occurred in the re-
lationship between people and food. Historically, food was
simply seen as sustenance. But, in an attempt to understand
how food and air functioned to produce work and heat, our
current scientific notions of nourishment and nutrition began
to develop. Lavoisier overturned the century-old phlogistic
doctrine in the late 18th century with his discovery of the
role of oxygen in combustion and respiration. Within 50
years, his general ideas of carbon and hydrogen fuel were
replaced by Liebig’s proposal of specific organic molecules,
such as starch or sugars, fats, and albumin, fibrin, and
‘‘proteines.’’4 These advancements then led to the expla-
nation of the millennium-old curiosities of Aristotle and
Galen on the source of ‘‘innate heat.’’5 By the close of the
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19th century, a Calorie (technically a kilocalorie or *4.2
kilojoules) was defined.

Food

Scientific advances made during the 1840s marked the be-
ginning of modern nutritional science. Food was now clas-
sified as proteins, carbohydrates, or fats based on the majority
macronutrient, deemphasizing the fact that whole food typi-
cally contains a mixture of constituents. Food went beyond
sustenance and now had a designation outside of hunger. In
1875, having worked with the German nutritional scientists
Carl von Voit, Max von Pettenkofer, and Max Rubner, At-
water established a laboratory at Wesleyan University to
evaluate systematically the various components of foodstuffs.
By 1877, government funding to promote agriculture by sci-
entific investigation and experiments reached $5000 per year.
In 1887, 16 of these laboratories existed and the US Congress
furthered the work by appropriating $15,000 to each state
having such a facility; by 1888, their appropriations grew to
*$1,000,000 annually, with *25% coming from nongov-
ernment donations. The promotion of food through food
science had become big business.6

At these laboratories, the macronutrient ratios of protein,
carbohydrates, and fats in over 4000 foods were measured
by calorimetry. Atwater popularized the nutritional equiva-
lency of food through the concept of the Calorie, and while
retaining the general protein plus fuel paradigm begun by
Justus von Liebig, he sought to normalize the nutritive
economy of food, while not making any statements per se
about health.7 Over the next two decades, the US Depart-
ment of Agriculture stakeholders promoted food products to
a starving nation; it was now known that expensive foods
were not necessarily more ‘‘nutritious’’ than less expensive
foods. For example, beans and rice were equally, if not more
nourishing, than more expensive meat.8

Protein, Carbohydrates, and Fat

The business of food was flourishing by the time of At-
water’s death and the last published edition of his Principles
of Nutrition and Nutritive Value of Food in the early 1900s.9

The macronutrient-based marketing of food, particularly
protein-based marketing, was exemplified in the following
decade by beef versus wheat advertising campaigns, each
claiming theirs was the best economic value for protein.10

The discovery of vitamins in the 1920s then led to new
marketing campaigns aimed at advertising a food’s utility
based on vitamin content. This approach to food was even
adopted in the early 20th century US foreign policy as an
economic tool to control food in times of peace and war.10,11

However, whole food simply does not fit these labels well.
For example, few realize that the common potato, although
typically considered a carbohydrate, can be a significant di-
etary source of protein.12 Moreover, the perceived prevalence
of protein deficiency and the emphasis that historically had
been given to the role of protein in human undernutrition was
clarified in Donald S. McLaren’s 1974 commentary, ‘‘The
great protein fiasco.’’13 Even kwashiorkor has been shown
not to be due to simple protein deficiency, but rather a more
complicated gut microbiome–diet relationship.14–16

Interestingly, a recent study using a nutritional geometric
framework and state–space modeling approach found that

folivorous (leaf-eating) mountain gorillas in Uganda prior-
itize the intake of nonprotein energy (NPE).17 Specifically,
NPE intake was found to be invariant throughout the year,
whereas protein intake was determinant on its availability.
The concentrations of protein consumed in relation to total
energy when leaves were the major portion of the diet for
the gorillas were close to the maximum recommended for
humans and similar to high-protein human weight-loss diets.
Alternatively, the concentrations of protein in relation to
total energy when the gorillas ate fruit-dominated diets were
similar to those typically recommended for humans. Gorillas
live in a world where Calorie scarcity and abundance change
with the season. We have created an environment of ubiq-
uitous, cheap, and tasty Calories and have developed social
paradigms that frequently revolve around food.

The Food Triangle

From the mid-19th century, food has been conceptualized
and promoted as protein plus fuel. And, during times of
protein and calorie scarcity, this paradigm makes sense.
However, because relatively few societies exist today that
suffer from severe protein and calorie deficiencies, a new
paradigm may be useful.

Our version of the Food Triangle (Fig. 1) organizes food
using an energy density paradigm. It recognizes that es-
sential amino acids (i.e., proteins) are not limiting nutrients
in any whole food diet that meets daily energy needs. Ra-
ther, plant- or animal-sourced amino acids, in excess of
daily requirements, along with carbohydrates and fat, all
become fuel. Moreover, since the presence of combined
fuels in a meal creates an oxidative priority that affects
one’s postprandial respiratory quotient (RQ) and resting
metabolic rate (RMR),18,19 it may be conceptually easier to
separate them on the basis of fuel source rather than ma-
jority macronutrient composition. This organization of en-
ergy density further permits individuals to address their
micronutrient requirements (the apex of the triangle) with-
out driving overnutrition (the bottom vertices of the trian-
gle). Not surprisingly, many popular diet schemes fall along
one of the descending sides of this food triangle, often
eliminating one or more food groups (e.g., ‘‘red’’ meat,
fruit, dairy, ‘‘white’’ starches, etc.).

One problem with the macronutrient-based organization
of food is that it legitimizes certain foodstuffs as equivalent
and nourishing as whole food. It additionally focuses con-
sumers on often confusing goals (i.e., eating low-glycemic,
complex carbohydrates) rather than simple messages (i.e.,
eat carrots). It also neglects Atwater’s 19th century warnings
of acquired appetite and does not account for the impact diet
plays on both the gut microbiome20–23 and macronutrients in
excess of their requirement, while neglecting calorie-limited
and vitamin-, mineral-, and phytonutrient-rich plant foods.24–28

Calories and Mitochondrial Dysfunction

At a cellular level, mitochondrial stress and bioenergetics
have been linked to chronic overnutrition affecting overall
cellular redox circuits.29–31 Excess alcohol, branched-chain
amino acids (BCAA), fructose, and trans fats have all been
shown to affect mitochondrial function and enhance in-
trahepatic fat when energy replete,32,33 and although nu-
merous studies have demonstrated that de novo lipogenesis
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does not significantly contribute to obesity per se,34–39 the
general ‘‘sugar turns to fat’’ myth prevails, detracting focus
from the negative metabolic effects these substrates have on
the liver.

Contrary to overnutrition and calorie excess, calorie re-
striction typically delays diseases of aging and extends life
span.40,41 Whether in yeast or mammals, a reduction in
calories by 30%–40% from ad libitum feeding triggers a
network of genes that evolved to protect organisms during
times of food scarcity (i.e., ‘‘longevity’’ genes). Alter-
natively, excessive intake of macronutrients, for example,

the essential amino acid methionine, is negatively corre-
lated with longevity.42,43 This ‘‘longevity survival net-
work’’ includes insulin/insulin-like growth factor-1 (IGF-1)
signaling, mammalian target of rapamycin (mTOR), AMP-
activated protein kinase (AMPK), and the seven sirtuins
(SIRT1–7), a family of cellular energetics and defense en-
zymes.44–46 In fact, sirtuin-activating compounds (STACs),
such as resveratrol and fisetin, and other calorie restriction
mimetics, such as metformin, are thought to derive the
majority of their health benefits not from antioxidant prop-
erties or by inducing a cellular damage response (hormesis),
but rather from interacting with conserved regions in en-
zymes that have evolved to sense molecules in the envi-
ronment.47,48 The ‘‘xenohormesis hypothesis’’ suggests that
STACs act as an advance warning generated by plants in
times of stress or deteriorating environmental conditions,
and that these stress-signaling molecules may coordinate
sirtuin-mediated defenses across species.49–52

Metabolic Winter

Sirtuins function to maintain homeostasis and secure an
organism’s survival when exposed to internal or external
perturbations, and there is an abundant literature demon-
strating their role(s) in obesity, metabolic syndrome, dia-
betes, cancer, inflammation, and cardiovascular disease.53–59

SIRT1, in particular, is a key regulator of energy homeo-
stasis and metabolism via peroxisome proliferator-activated
receptor-gamma coactivator 1a (PGC-1a)60 and hypoxia-
inducible factor 1-a (HIF-1a),61 all of which are critical
mediators of mitochondrial biogenesis and possibly respon-
sible for many of the health benefits of dieting and exercise.
Interestingly, the other main function of PGC-1a involves
another survival trait, nonshivering thermogenesis,62 during
which individual mitochondrion bypass adenosine triphos-
phate (ATP) production and instead create heat by activat-
ing uncoupling protein 1 (UCP-1).63 This is a very efficient
mechanism to replace the immediate response to cold, shiv-
ering, with a mechanism that produces heat directly through
the recruitment of mitochondria.

Although all skeletal muscle cells are associated with adap-
tive thermogenesis,64 brown adipose tissue (BAT) is also a
key player in metabolism. Humans are born with more
fat than any other species and have significant amounts of
BAT; but, until recently, it was thought to be lost by adult-
hood.65,66 New studies suggest that not only can adults have
significant amounts of BAT,67–69 but that exercise-induced
production of irisin causes an increase in BAT and an as-
sociated increase in energy expenditure.70 These findings
support the notion that modern humans evolved to cope with
seasonally cool temperatures (cold stress) and periodic pe-
riods of food scarcity (calorie restriction).

Sleep and Body Temperature

Our current society is one that is chronically sleep de-
prived. Links between sleep and metabolic dysfunction can
be found in early Roman medicine, and too little sleep is
associated with obesity and many cardiometabolic dis-
eases.71–74 Early observations ranging from Australian ab-
origines to the cold climate of the Scandinavian nomadic
Lapps demonstrate how adaptable humans are to mild cold
stress during sleep.75–77 Adaptation also occurs for nonnative

FIG. 1. The Food Triangle. The Food Triangle organizes
whole food using an energy density paradigm. It recognizes
that essential amino acids (i.e., proteins) are not limiting
nutrients in any whole food diet that meets daily energy
needs. Rather, vegetable- or animal-sourced amino acids, in
excess of daily requirements, along with carbohydrates
(CHO) and fat (FAT), all become fuel. This organization of
energy density permits individuals to address their micro-
nutrient requirements (the apex of the triangle) without
driving chronic overnutrition (the bottom vertices of the
triangle). These foods become the nutritional foundation of
daily meals, rather than the more energy-dense alternatives.
They also provide a rich source of phytonutrients and can be
eaten in nearly unlimited quantities. It further places em-
phasis on foods that are increasingly important for healthy
gut microbiota. With the exception of nuts and seeds (plant-
sourced fats, which can provide the required *1%–3% of
dietary essential fatty acids), foodstuffs and fuel source may
be more easily recognized by classified as either ‘‘animal-
based’’ foods or ‘‘plant-based’’ foods based on their non-
protein energy source. CHOs may also drive dietary fat
storage through shifts in postprandial respiratory quotient
(RQ)/resting metabolic rate (RMR). In addition to increased
fat storage, it may be more difficult to recognize energy
excesses when crossing over from primarily CHO-sourced
fuel to fat-sourced fuel or vice versa. Highly refined oils and
fats, sugars, and grains are not listed, as they are not whole
foods and should be consumed in limited quantities.
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inhabitants after repeated exposure.78 Furthermore, until the
20th century, winter was characterized by long nights without
artificial light and generally cooler sleeping conditions.

Importantly, much of the same biology that allows winter
adaptation for cooler environments, including sleep, overlaps
the underlying metabolic mechanisms involved in adaptations
to calorie scarcity.79 For example, increased sleep in cool
environments and long nights of winter in the absence of
excess artificial light and warmth may work synergistically to
promote the conservation of valuable calories in a time of
year when they are naturally scarce.80 Melatonin, a hormone
associated with sleep, acts to lower the core body tempera-
ture,81–84 and a steep rate of decline in core body temperature
is associated with both sleep onset and quality.85,86 In con-
trast, reduced sleep leads to impaired glucose tolerance and
insulin resistance,87 increased appetite through changes in
leptin and ghrelin levels,88 and reduced energy expenditure.89

One might conceptually associate winter’s cold, dark, and
still environment as a natural balance to summer’s warm,
bright, and active environment. Very few of us now sleep in
the cold, and studies have even shown an association between
weight gain and average room temperature.90

Furthermore, ‘‘longevity’’ genes are central to the regu-
lation of biological circadian rhythms, including those that
regulate sleeping, eating, and hormone and neurotransmitter
secretion.91,92 Importantly, perturbations of the internal
clock system and sleep are established risk factors for
obesity, diabetes mellitus, and cardiovascular disease and
are associated with metabolic dysfunction.93–95 Moreover,
there appears to be a reciprocal relationship between cir-
cadian rhythms and metabolism: Although the circadian
clock indeed regulates multiple metabolic pathways (in-
cluding glucose and cholesterol metabolism), metabolites
and feeding behavior can also regulate the circadian clock.96

Thus, disruption of genes regulating circadian rhythms, in-
cluding the ‘‘longevity’’ genes, either alone or in combi-
nation with diet-induced changes in systemic metabolites
and feeding behavior, may underlie the molecular link be-
tween sleep deprivation and altered sleeping patterns such as
rotating shift work and cardiometabolic disease.

Putting It All Together

It appears that we have an evolutionary discordance be-
tween our biology that evolved to counter seasonal calorie
scarcity and mild cold stress and our modern world of
ubiquitous calories and excess warmth. When discussing
solutions to the obesity pandemic, the almost universal
mantra is ‘‘eat less, move more.’’ While no one loses weight
by eating more total calories, it has been demonstrated that
the average daily energy expenditure of traditional hunter-
gatherers was no different than that of modern day Western
(United States and European) counterparts. 97 This suggests
that dramatic differences in lifestyle activity have mini-
mal effects on total energy expenditure and that variances
in obesity prevalence among populations result primarily
from differences in energy intake rather than expenditure.
Moreover, obese people generally have a higher RMR and
energy expenditure than the nonobese.98 Although it seems
reasonable to assume that obesity is a result of less activity,
several studies have shown the fallacy of expecting exercise
to promote significant weight loss without dietary chan-
ges.99,100 Thus, it might be reasonable to consider that many

of the health benefits of physical activity are actually
adaptive responses related to times of cold stress and shiv-
ering. In nature, animals do not intentionally participate in
high levels of activity to mitigate excess calorie ingestion—
available calories are limited and animals conserve activity.
In fact, the main factors influencing energy expenditure are
body mass and ambient temperature, not activity. A recent
study even demonstrated that energy expenditure from phys-
ical activity in humans has not declined since the 1980s and
matches energy expenditures of wild mammals.101 Thus,
since energy expenditure from physical activity has not
significantly declined over the same period of time that
obesity rates have risen and modern daily energy expendi-
ture in humans is comparable to that of current mammals in
the wild, decreased energy expenditure is unlikely to have
fueled the obesity epidemic.

These observations do not negate the myriad health ben-
efits of exercise or discourage physical activity, nor do they
suggest that significant lifestyle changes (including changes
to both energy intake and expenditure) cannot impact
overall weight; but, increasing exercise time may not be a
major factor in obesity prevention for the general public.
Simply increasing activity through exercise in the absence
of a significant lifestyle dietary modification is unlikely to
have a significant impact. On the other hand, lifestyle mod-
ifications involving diet alone can significantly impact both
obesity and chronic disease.

Which brings us full circle with respect to food. Hippocrates
pondered the need for one or two meals a day, and yet now
society tends to eat throughout the entire day. Following a
meal, postprandial shifts occur in RMR/RQ for at least 4 hr to
accommodate the calories consumed102; only then do we then
resume using ‘‘stored’’ energy. Moreover, skipping meals does
not cause a decrease in metabolism; in fact, an increase in
metabolism occurs during the first 4 days of a fast.103

The nutrition paradigm of protein plus fuel that began in
the mid-19th century changed the perception of eating food
from one of sustenance to one of seeking specific nutrition.
It popularized marketing campaigns designed to promote
the nutrient content of foodstuffs, ignoring the potential for
consuming excess calories. In a world of calorie scarcity,
the drive for ubiquitous, cheap, and tasty calories was a
noble goal. The problem seems to be that we succeeded in
combatting malnutrition and now are faced with the reality
of chronic overnutrition, with the best advice to prevent
overnutrition-related disease being ‘‘eat less, move more.’’
Perhaps the most important meal of the day is not to break
fast in the face of obesity, but instead to center our plate
on nutrient-dense, calorically poor vegetables and fruits. At
the very least, we should heed Atwater’s advice and not be
‘‘.influenced too much by taste’’ or ‘‘let natural instinct be
overruled by acquired appetite.’’

Conclusions

In this review, we have discussed a novel way to view the
major food macronutrients and how the characterization of
the nutritional content of food in the human diet may have
unintentionally driven excessive caloric consumption, along
with a novel relationship among calorie scarcity, mild cold
stress, and sleep that are relevant to obesity, metabolic
syndrome, and diabetes. In an effort to keep the essay
concise and focused, we intentionally did not address each
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disease entity (i.e., obesity, metabolic syndrome, and diabe-
tes) separately; however, subsequent reviews are forthcoming.

Our 7-million-year evolutionary path was dominated by
two seasonal challenges—calorie scarcity and mild cold stress.
In the last 0.9 inches of our evolutionary mile, we solved them
both. Refrigeration and transportation have fundamentally
changed the food to which we have access and the environ-
ments in which we live. We also sleep less and are exposed to
considerably more artificial light, particularly in the winter
months. Obesity and chronic disease are seen most often in
people and the animals (pets) they keep warm and over-
nourished. Similar to the circadian cycle and like most other
living organisms, it is reasonable to believe we also respond to
the seasons and carry with us the survival genes for winter.
Maybe our problem is that winter never comes.
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